
penalizes large weights

Not guaranteed to converge to a good solution

Considers all features

LSTM with Attention

Stochastic Depth

Masked language modeling

Feature extractor (Apply encoder, e.g. resnet)

Hard to train

A function of theta

Batch Norm

Priot Matching Term

Self-supervised

Latent Diffusion

Muuch easier to acquire unlabeled data

Adaptability to diff image sizes

Mitigate vanishing gradient

Non-linearly separable data can 
be classified thru...

Reccurent forwarf rewrite the hidden states on every time step  (for long 
context)

Increase receptive field size by convolving on downsampled feature maps

Enables usage of larger learning rate

Intuitively, how are the weight and biases 
updated?

Perceptron

Can be applied to sentences of varied 
lengths

Neural Networks

Too expensive for large datasets

Problems

using a single data point to compute the gradient of the loss 
function at each iteration

Contrastive Algorithms

created by convolving a filter across the input image or the 
output of a previous layer

Transfer Learning

Combines the benefits of 

Sum up w1x1 + w2x2 + b 

Downsample feature maps that highlight the most prominent features

Skip connections

AdaGrad

Reccurent Neural 
Networks (RNNs)

More parameters to tune (i.e. momentum coefficient)

Encourages Feature reuse

Stochastic Gradient Descent

Normalization Layers*

Homophili

Likelihood p(X|\theta)

Types of Attentions

RMSProp

Noise of gradients scale with learning rate

2 discriminators

Model ignores some features (Why?)

Hiddent State H_t

Gradient Descent Update Rule

Reparametrization trick -> makes the network differentiable

A LOT of paramters

Limitations

Adam (Adaptive Moment 
Estimate)

Masked self attention in decoder

Latent Space

Contrastive Language-Image Pretraining

Improve efficiency by reducing computations with downsampling

Translational Invariance

Nonzero coefficients,

Vision Transformer (ViT)

Padding of 1's

Vanishing gradient

Triplet loss function

Cycle consistency

Apply activation function w1x1 + w2x2 + b = 0 or 1

Training process

Exploding gradients -> unstable training 

cache negative samples from earlier batches as you train

Decoders only

Direct Translation

Improve prediction quality by combining low-level image features

Calculate the gradient for all weights and biases

Solution: select a batch -> Minibatch SGD

Pros

Reaso 2: Mitigating Overfitting on frequent features

Padding

Reconstruction Term

Parameter Sharing

Few shot learning

Output gate

Bidirectional LSTM

Components

Hierarchical VAEs

Why: Vanishing or exploding gradient

Instance norm

Makes Deeper networks easier to train

Deep CNNs 

Outperforms shallow CNNs... most of the time?

ELBO (Evidence Lower Bound)

Group Norm

MoCo v2 outperforms SimCLR

Linear classifer

Feature Map

Type something

Still faster than GD

Used for inference

Improves stability of training 

Not all images are labeled

Multiple Filters

Multi-Layer Perceptron (MLP) Complex Decision Boundaries

Use the negative discriminator loss to update generator

Only converges on Convex functions

Detection of Local Patterns

Improves training stability

adapting learning rate for each parameter

Advantages

RMSProp

Mean & Variance dimension

Problems

SGD w/ momentum

Feature engineering

Helps subsequent layers focus on the presence of features instead of their 
locations

Requires tuning batch-size parameter

Kernel SVMs

Why does this ensure that the spatial size is preserved?

combining low-level and high-level features

Residual Connections

Advantages

Word2Vec

Discriminator - minimize loss

Skip connections allow...

Random forests

High variance in graident -> unstable convergence

Makes training eaiser

Predecessor to Neural nets

Mitigates vanishing gradient with cell state

Generator trained to reconstruct the input space

Performs unpaired image translation by learning to fool a discriminator 

Ensures all features have a similar scale

Training objective: next sentence

Training objective: next word prediction

Sparse gradients (most entries are 0)

Use hi, hj for downstreamtasks

Downsampling improves efficiency

Problems

Add output of previous layer to next layer

Transforms + aggregate neighbors

Weight Decay

AdaGrad

Scales well

Good for Image Classification

L2

Diffusion

May not converge to the best sol but osciallate near it

Mini-batch SGD

All the information in the input does not need to be compressed into a 
small fixed-dimensional vector.

Mode collapse

Minmax training objective is hard to optimize

Pretraining

Take multiple binary inputs x1 , x2

Parallelizable

Convolutional Neural 
Networks (CNNs)

Feature engineering

exploding denominator can lead to a diminishing learning rate

Reduces Overfitting and generalization

Hidden State H_t

8 Optimization 
Algorithms

Local Connectivity

Can only model images at single resolution

Weights are shared across time (Allows feature 
sharing)

Can be applied to large volumes of unlabeled data

Generator

Helpful for long sequences

Padding of 0's

Replace one encoder with a exponential moving average of the model

Translational Invariance

Model size not increasing with size of input

Reduction of Parameters

Requires inimal data augmentation compares to traditional ViT

Assume graph is invariant under relabeling/permuting the nodes

Generator - maximize loss

Architecture (Encoder + Decoder)

Fully connected 

Supervised learning, w/ small amount of target data

Problems

SimCLR Loss: Temperature scaled crss-entropy loss, L2 normalization 
(cosine similarity)

Cons

Good for non covex problems because momentum help escape local 
minima

How to eavluate?

Improves learning efficiency

Gradient Clipping

Vision Language 
Models (VLMs)

Mean pooling

Convolutions over volumes

Faciliatates better gradient fow during training

weight decay

Faster than SGD

Iterative update for each epoch

Empirical Risk Minimization

Momentum

Larger learning rate improves generalization

 trains a large ensemble of models with shared weights

Back-propagation Algorithm*

Bert

Image captioning model (transformer)

dding an additional term to the loss function

How it works

beneficial for feature selection (Why?)

Dropout

Almost always converges faster than SGD because momentum 
dampens the oscillations of SGD

Tradeoff convergence

Unparied translation

Regularization 
Techniques

Example: ImageNet

output

Concatenate output of previous layer to next layer

Scaling Laws

Layer norm

May overshoot min. if momentum is too high

Variational Auto Encoders (VAEs)

Batch Normalization

Data augmentation

SimCLR

CLIP (Contranstive Language-Image Pretraining)

Vanishing gradient

Bottleneck Problem

Hadamard Product

Maximum Likelihood Estimation 
(MLE)

Hourglass

Layer Norm

Dense connections

How it works: Updates weights using momentum, which is calculated using 
past gradients

Oversmooth problem: Can't stack too many layers

Introduces variability to the graident

Introduces weight decay to Adam

Apply a base encoder to each to extract features

the network's performance on the training set starts to degrade 
network depth increases 

Computes the full gradient

Other models

Encoder-Decoder

Regularizes and prevent overfitting

Trained w/ binary cross entropy loss

Generator "competing" with discrimnator

DiNo (Self-Supervised Vision 
Transformers)

Deep Walk

Good for dealing with sparse features (why?)

Unpooling

Early Stopping

How does it work?

Type something

DenseNet

Transformers

Reduction of Parameters

Image segmentation

Word Embeddings

Bayesian Inference

Improves AdaGRad: Solves the diminishing learning rate problem of 
AdaGrad (How?)

Introduced ResNet to battle this problem

Reduce spatial dimensions of feature maps

Cross-attention in decoder

Long-Short Term 
Memory (LSTM)

Uses all training data

Vision Pretraining

Each output token can use different information from the input tokens.

stacks mult. perceptraons

Encoder-Decoder Transformer

Better at downstrem tasks

Max pooling

Attention mechanism Advantages

The score function

Chalenges

A function of X

Priot Distribution p(\theta)

Better for long Sequences

multivariate chain rule

More stable convergence than SGD (Why?)

Large Language 
Models (LLMs)

Why not use MLPs?: Preserves spatial relations

Components

Non-linear?

Large datasets are required

One filter

Prevention of Degradation Problem

 can perform unconditional image 
generation conditioned on samples of 
Gaussian noise

Keep layers in tact during testing

2 generators

In VAE, we want to compute/estimate the posterior distribution to model the 
latent space

Maintains a weighted movingaverage of the square of 
gradients, controllable ratio between v and g

Deep Learning

AdamW

Graphs are not translational invariant

Generative Adversarial Networks 
(GANs)

Break down inmage into patches (each patch as a word embedding)

Masked Auto Encoder (MaE)

Allow parallelization to extract latent vector for each pixel

Automatically adapts the learning rate for each parameter 
(weight) based on the historical gradients

Encoders only

Randomly drops layers during training

Used as objective function for training VAEs

Backpropagation Through The TIme 
(BPTT)

Forget gate

CrossEntropy Loss(log loss)

U-Nets

Computationally expensive

Perturbations designed to maximize loss

ResNet

Mean & Variance Dimension

CycleGAN

Models have better representations

Graph Convolutional Neural 
Networks (GCNs)

Misc.

MoCo (Momentum Contrast)

leads to solutions with sparse weights (Why?)

Per-sample gradient = full gradient in expectation

Generated by perturbing input data

Graph Neural Networks 
(GNNs)

Contrastive Learning

Components

Want to select 1 example randomly each time -> SGD

Layer normalization

Almost identical to BERT

Cell state improves gradient flow

Self-attention

Posterior Distribution p(\theta|X)

Evaluate on target task

Discriminator

Problem: More parameters to be tuned

T5

Pooling Layers

GPT

adjusting learning rates based on recent gradient magnitudes

Multiply by weights, w1 x1 , w2 x2

Node2Vec

Increase receptive field size

The Degradation Problem

Swim Transformers

Gradient Descent 

Useful for specialized fields where there's a lot of unlabled data

L1

Efficient and flexible

Statistical 
Learning Theory

May still get stuck in saddle point or local minima 

Requires defining some pretext tasks

Random Walks

MLP weights can be learned thru back prop and 
gradient descent (or other opt techniques)

Provides noisy gradient updates that (sometimes) help escape 
suboptimal solutions (local minima)

Reason 1: Individual Learning Rates

Apply MLP (projection head) (Why?)

Type something

How does it work?

Input gate

Problems

Cell state C_t

Prevents image shrinking and loss of information from image 
boundary

Adversarial Training

2 different augmented samples

Convolutions

Improves generalization of neural nets when training with limited data

Normalize channels to mean 0 and variance 1 across each 
training batch N x C x H x W -> 1 x C x 1 x 1 (mean and 
variance dimension)

What is the result of 
convolving a 64x64x192 

dimensional cube with a 1x1x1 
filter? (64 x 64 x1, it 

aggregates the information 
across 192 channels ) 

How would this image change 
if you used an MLP instead of 

a 1x1 convolution filter to 
produce a (64x64x1) feature 

map? Hint: think about 
parameter counts and feature 

interactions

Which of the opt imizat ion 
algorithms listed adaptively 

compute a different learning rate 
for each parameter in the 

network?

When listing 
advantages or 

disadvantages of an 
algorithm, remember 
to explain WHY it's 

that way

Nicole Hao

A 5x5 kernel is applied to a 
feature map with 4 channels 
and produces a feature map 
with 8 channels. How many 

parameters does it have? Ignore 
bias terms.

Given an input feature map 
with dimension (h x w x c), a 

3x3 convolut ion layer is 
applied with padding to 

produce an output feature 
map with the same dimensions 

(h x w x c). How many 
parameters are in the 

convolut ion layer?

How does 
parameter sharing 
for mult. channels 

work?

Nicole Hao

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://mbernste.github.io/posts/vae/#:~:text=Variational%20autoencoders%20(VAEs)%2C%20introduced,down%20to%20their%20intrinsic%20dimensionality.
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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