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Options Pricing

Definition (Options)

Options contracts provide the buyer or investor with the right, but not the
obligation, to buy or sell an underlying asset at a preset price, called the
strike price K , at the expiration time T .

Definition (Options Pricing)

The process of determining the fair price of an option that helps traders
maximize profits and optimize decision-making.
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Preliminaries

Definition (Martingale)

Let (Ω,F ,P) be a probability space, let T be a fixed positive number, and
let F(t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . Consider a
stochastic process M(t) adapted to F(t), each M(t) ∈ L1, where
0 ≤ t ≤ T . If

E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t ≤ T

we say M(t) is a martingale. It has no tendency to rise or fall.

Theorem (Martingale and Risk-neutral measure)

A discounted process is a martingale under risk-neutral measure (a
probability measure that assumes all risky assets earn the risk-free rate of
return).

Nicole Hao1, John Holmes2, Echo Li2, Diep Luong-Le3Option Pricing under Stochastic Volatility, Equity Premium, and Interest Rates in a Complete Market3 / 19



Preliminaries

Definition (Martingale)

Let (Ω,F ,P) be a probability space, let T be a fixed positive number, and
let F(t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebras of F . Consider a
stochastic process M(t) adapted to F(t), each M(t) ∈ L1, where
0 ≤ t ≤ T . If

E[M(t)|F(s)] = M(s) for all 0 ≤ s ≤ t ≤ T

we say M(t) is a martingale. It has no tendency to rise or fall.

Theorem (Martingale and Risk-neutral measure)

A discounted process is a martingale under risk-neutral measure (a
probability measure that assumes all risky assets earn the risk-free rate of
return).

Nicole Hao1, John Holmes2, Echo Li2, Diep Luong-Le3Option Pricing under Stochastic Volatility, Equity Premium, and Interest Rates in a Complete Market3 / 19



The Black-Scholes-Merton Equation

Provides a mathematical foundation for the determination of the price
of an option

Geometric Brownian Motion

dS(t) = µS(t)dt + σS(t)dW (t)

▶ Brownian motion W : Continuous-time martingale.

The BSM equation:

Vt = rV − rSVs −
σ2

2
S2Vss
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Research Objectives

Motivation: Restrictions of the BSM model
▶ Constant variance of stock price
▶ Constant risk-free interest rate
▶ Constant equity premium

Research Objectives: build a more robust model that accounts for
changes in equity premium and variance of stocks as well as the
bond’s interest rate.
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Assumptions

No arbitrage allowed: If P(T ) = V (T ) , then
P(t) = V (t) ∀ 0 < t ≤ T

All processes are pricing processes

Definition (Pricing process)

For any stochastic process {Vt} adapted to {Ft}, the natural filtration
generated by the portfolio process P, then we say Vt is a pricing process
if there exists a risk-neutral measure Q of the portfolio process P, such
that discounted option price process is a martingale.

No transaction costs: No extra fee when trading.

Perfect liquidity: Buy or sell any quantity of any asset at any time.
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Our Model

We assumed the following system to describe the evolution of the stock
price:

dS(t) = (µ+ X (t) + r)S(t)dt +
√

σs(t)S(t)dW1(t)

dX (t) = −κxX (t)dt + σx(ρxdW1(t) +
√

1− ρ2xdW2(t))

dσs(t) = κx(σ − σs(t))dt + η
√

σs(t)(ρsdW1(t) +
√
1− ρ2sdW3(t))

dR(t) = κR(r − R(t))dt + ξ(ρRdW1(t) +
√

1− ρ2RdW4(t))

S(t): Underlying asset price/stock price

X (t): Change in equity premium

σS(t): Variance of the stock price

R(t) : Bond’s interest rate

Nicole Hao1, John Holmes2, Echo Li2, Diep Luong-Le3Option Pricing under Stochastic Volatility, Equity Premium, and Interest Rates in a Complete Market7 / 19



Results: Overview
Applied two modeling techniques to derive the PDE for the price of
an option.

▶ Replicating portfolio
▶ Risk-Neutral Measure

Proposed and proved the Fundamental Theorem of Hedgeability
▶ Further validates our derivation using two approaches

The PDE (4 variables, S, σs , X, R):

Vt = R(V − VsS − VxX − Vσsσs − VrR)

− 1

2
(VSSσsS

2 + Vσsσsη
2σs + VRRσR

2 + VXXσX
2)

− VSσsησsSρS − VSRσR
√
σsSρR − VRσsσRη

√
σsρRρS

− VXσsη
√
σsσXρXρS − VXSσX

√
σsSρX − VXRσXσRρRρX

Used the finite difference method to approximate the solution of the
PDE.
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Derivation: Replicating Portfolio Method

Theorem

Hedgeability Theorem states that every derivative is hedgeable if and only
if every underlying asset of the derivative is tradeable.

Assuming S ,X , σs are tradable pricing processes. By Hedgeability
theorem, we have every derivative process V (S ,X , σs , t) for some t can be
hedged by a portfolio process P given that every pricing process generating
the derivative is tradeable, that is,

dP = R(P−∆xX−∆sS−∆σs−∆RR)dt+∆xdX+∆sdS+∆σsdσs+∆RdR

for arbitrary previsible adapted processes {∆i} denoting for the trading
strategy on each asset i . Hence, setting V = P and given V ,P are pricing
processes, we have dV = dP.
Solve dV = dP by setting ∆ terms, we can get the PDE with only
deterministic terms left.
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Derivation: Risk-Neutral Measure Method

We choose a probability measure Q such that the discounted pricing
processes, DS ,DX ,Dσs are martingales where people are risk neutral
under Q.

Applying Girsanov’s theorem, we are able to find Q.

d(DS) = SdD+DdS +dDdS = DS
√
σs(

µ+ X
√
σs

dt+dW1) =: DS
√
σsdW̃1

where W̃1 denotes for a martingale under new measure Q. And we do the
same thing for every other discounted asset process, getting that
d(DS) = DS

√
σsdW̃1

d(Dσs) = Dη
√
σs(ρsdW̃1 +

√
1− ρ2sdW̃3)

d(DX ) = DσX (ρXdW̃1 +
√
1− ρ2XdW̃4)
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Derivation: Risk-Neutral Measure Method (Cont.)

Note that V is a pricing process, such that its discounted process DV is a
martingale, where we notice that

d(DV ) = DdV + VdD

and since DV is a martingale, applying Ito’s lemma on DV , the
deterministic part of the equation is equal to 0.

Thus, we get the desired PDE

Vt = R(V −
∑

VXi
Xi )−

1

2
(VSSσsS

2+Vσsσsη
2σs +VRRσR

2+VXXσX
2)

−VSσsησsSρS −VSRσR
√
σsSρR −VRσsσRη

√
σsρRρS −VRσsσRη

√
σsρRρS

− VXσsη
√
σsσXρXρS − VXSσX

√
σsSρX − VXRσXσRρRρX
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Theorem of Hedgeability

Theorem

Suppose a market whose asset processes satisfy No Arbitrage, Frictionless,
Free Trading Position and full liquidity of assets. Consider the market
consists some value processes Xi (t) and a riskless interest rate process Rt

for i ∈ I = {1, · · · , n}, t ∈ R+. Denote V for arbitrary derivative processes
of (X1, · · · ,Xn,R, t) w.r.t. Q, a risk-neutral measure. We use P to denote
portfolio process.
For any such V , there exists a portfolio process dV = dP if and only if P
can be written into the form

dP = R(P −
∑
i∈I

∆iXi −∆RR)dt +
∑
i∈I

∆idXi +∆RdR (1)

Nicole Hao1, John Holmes2, Echo Li2, Diep Luong-Le3Option Pricing under Stochastic Volatility, Equity Premium, and Interest Rates in a Complete Market12 / 19



Hedgeability Theorem: Proof

( =⇒ )
For the forward proof it suffices to prove that

dP = dV =⇒ dP = R(P−
∑
i∈I

∆iXi−∆RR)dt+
∑
i∈I

∆idXi+∆RdR (2)

is true. Suppose some pricing processes Xj are not tradeable and
unadapted, then it leads to a contradiction to dV = dP. Otherwise it
must can be written in dP form to be tradeable.

( ⇐= )
Consider interest-discounted process {X ′

i ,P
′,V ′} for each Xi ,P, and V .

Since V ′ is a pricing process for all V .
We have that {X ′

i ,P
′,V ′} are martingales under Q. Therefore, We may

apply martingale transformation theorem on V ′, finding out it could be
represented by some discounted portfolio processes P ′.
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Derivative Estimation

Derivative estimation for time: ∂U
∂t ≈ Ut+1

i,j,m,n−Ut
i,j,m,n

∆t

First-order single-variable spatial derivative estimation:
∂U
∂S ≈ Ut

i+1,j,m,n−Ut
i−1,j,m,n

2∆S → similar for σs ,X , and R.

Second-order single-variable spatial derivative estimation:
∂2U
∂S2 ≈ Ut

i+1,j,m,n−2Ut
i,j,m,n+Ut

i−1,j,m,n

∆S2 → similar for σs ,X , and R.

Second-order mixed-variable spatial derivative estimation:
∂2U

∂S∂σs
≈ Ut

j+1,m+1,n−Ut
j−1,m−1,n−Ut

j+1,m−1,n+Ut
j−1,m+1,n

4∆S∆σs

→ similar for other mixed-variable spatial derivatives
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Derivative Estimation

Derivative estimation for time: ∂U
∂t ≈ Ut+1

i,j,m,n−Ut
i,j,m,n

∆t

First-order single-variable spatial derivative estimation:
∂U
∂S ≈ Ut

i+1,j,m,n−Ut
i−1,j,m,n

2∆S → similar for σs ,X , and R.

Second-order single-variable spatial derivative estimation:
∂2U
∂S2 ≈ Ut

i+1,j,m,n−2Ut
i,j,m,n+Ut

i−1,j,m,n

∆S2 → similar for σs ,X , and R.

Second-order mixed-variable spatial derivative estimation:
∂2U

∂S∂σs
≈ Ut

j+1,m+1,n−Ut
j−1,m−1,n−Ut

j+1,m−1,n+Ut
j−1,m+1,n

4∆S∆σs

→ similar for other mixed-variable spatial derivatives

Nicole Hao1, John Holmes2, Echo Li2, Diep Luong-Le3Option Pricing under Stochastic Volatility, Equity Premium, and Interest Rates in a Complete Market14 / 19



Numerical Schemes

Let M be a transformation matrix. Our goal is to find Ut+1.

Explicit scheme:
Ut+1 − Ut = MUt

Implicit scheme:
Ut+1 − Ut = MUt+1

Crank-Nicolson: Combination of explicit and implicit schemes with a
weight θ

Ut+1 − Ut = (1− θ)MUt + θMUt+1
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European Call and Up-and-out Barrier Call Options
Let strike price K = 5, barrier B = 8. The expiration time is T = 1, stock
price S = [0, 10], variance of the stock price σs = [0, 1], change in equity
premium X = [−1, 1], and interest rate R = [−0.2, 0.2].

Figure: Call option price when
X = 0.5 and R = 0.06

Figure: Barrier option price when
X = 0.5 and R = 0.06
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Convergence
A numerical scheme is convergent means that the solution to the finite
difference approximation approaches the true solution of the PDE when
the mesh is refined.

Below is the European call option price at different time steps of
Crank-Nicolson scheme when S = 8.5, σs = 0.28,X = 0, and R = 0.02.
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Future Directions

Find an accurate numerical approximation to the solution of the Asian
option PDE

Vt = R(V −
∑

VXi
Xi )− VAS

− 1

2
(VSSσsS

2 + Vσsσsη
2σs + VRRσR

2 + VXXσX
2)

− VSσsησsSρS − VSRσR
√
σsSρR

− VRσsσRη
√
σsρRρS − VXσsη

√
σsσXρXρS

− VXSσX
√
σsSρX − VXRσXσRρRρX

Use different numerical schemes and compare results
▶ Craig–Sneyd (CS)
▶ Hundsdorfer–Verwer (HV)
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