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Abstract

Flares are a well-studied aspect of the Sun’s magnetic activity. Detecting and classifying solar flares can inform the
analysis of contamination caused by stellar flares in exoplanet transmission spectra. In this paper, we present a
standardized procedure to classify solar flares with the aid of supervised machine learning. Using flare data from
the RHESSI mission and solar spectra from the HARPS-N instrument, we trained several supervised machine-
learning models, and found that the best-performing algorithm is C-Support Vector Classification (SVC) with
nonlinear kernels, specifically radial basis functions (RBF). The best-trained model, SVC with RBF kernels,
achieves an average aggregate accuracy score of 0.65, and categorical accuracy scores of over 0.70 for the no-flare
and weak-flare classes, respectively. In comparison, a blind classification algorithm would have an accuracy score
of 0.33. Testing showed that the model is able to detect and classify solar flares in entirely new data with different
characteristics and distributions from those of the training set. Future efforts could focus on enhancing
classification accuracy, investigating the efficacy of alternative models, particularly deep learning models, and
incorporating more data sets to extend the application of this framework to stars that host exoplanets.

Unified Astronomy Thesaurus concepts: The Sun (1693); High resolution spectroscopy (2096); Red dwarf flare
stars (1367); Solar flares (1496); Exoplanet atmospheres (487); Stellar activity (1580); Stellar astronomy (1583)

1. Introduction

Transmission spectroscopy is highly useful and widely used
for characterizing exoplanets since it can yield valuable
constraints on the nature and composition of planetary
atmospheres. Yet, due to the inhomogeneity and time
variability of the stellar photo- and chromospheres, this method
is intrinsically impacted by stellar spectral contamination
(Rackham et al. 2023). Often, the stellar contamination will
rival or even exceed the planetary spectral features, making it
very difficult to disentangle the exoplanet atmospheric signals
from stellar contamination (Rackham et al. 2023).

Stellar flares are another source of stellar contamination,
resulting in increased brightness in exoplanet transmission
spectra. They are wavelength dependent, which leads to
additional noise and distortions of the observed spectra across
a range of wavelengths. Such contamination poses a challenge
for measuring an exoplanet’s transit depth accurately. To
consider the impact of stellar flares, it is helpful to begin with
an investigation of solar flares, given the abundance of flare
data for the Sun. Efficient detection and classification methods
for solar flares in transmission spectra could help astronomers
correct for stellar contamination in exoplanet transmission
spectra with greater accuracy.

This study has been designed with two primary objectives.
First, it aims to address the challenge of detecting flare events
in high-resolution solar spectra. To achieve this, we correlated
solar spectra with solar flare events based on their start and end
times, labeled solar spectra, and fed labeled solar spectra into
supervised machine-learning models, which enabled accurate

detection of flares based on their energy levels. Second, the
project strives to develop a robust machine-learning model that
can classify flares in solar spectra as accurately as possible.
Identifying low-energy flares in high-resolution solar spectra
may present a greater difficulty compared to their high-energy
counterparts. However, the impact of low-energy flares on
spectra should not be disregarded. Thus, we aim to detect and
classify all flares in solar spectra, regardless of their energy
levels.
In this study, we employed supervised learning algorithms,

specifically Support Vector Classification (SVC), to detect and
classify solar flares in high-resolution solar spectra. Our
methodology encompasses a standardized procedure for
classifying flares, primarily based on their energy levels. To
assess the performance of the classification models, we utilized
multilabel metrics such as accuracy scores. By leveraging these
evaluation measures, we aim to provide a framework for
detecting and categorizing solar flares in the context of high-
resolution spectra.
The paper is organized as follows. Section 2 considers the

data sets used, followed in Section 3 by a description of our
methods, including data selection, analysis, and model testing.
Section 4 addresses the selection of supervised learning
algorithms and the validation of results using multilabel
metrics, and includes a discussion on the optimization of
model performance through means such as performing a grid
search and tweaking hyperparameters.

2. Data

Solar spectra, ranging from 2015 July to 2018 April, were
drawn from the Data & Analysis Center for Exoplanets (2020).
The spectra were collected with HARPS-N, an optical
spectrograph installed at the Italian Telescopio Nazionale
Galileo, designed specifically for the precise measurement of
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radial velocities in the search for exoplanets (Cosentino et al.
2012). The instrument offers a high resolution of ∼120,000,
allowing for detailed spectral analysis, and covers a range of
wavelengths 378–691 nm. Figure 1 shows the flux from one
observation against wavelength in the air. One observation here
refers to the single set of data collected by the HARPS-N over
5 minutes, capturing the intensity of light across different
wavelengths from the Sun (Dumusque et al. 2021).

Solar flare data used in this investigation were collected by
RHESSI (NASA Goddard Space Flight Center 2003). RHESSI
was a NASA satellite mission designed to study the Sun at
high-energy X-ray and gamma-ray wavelengths, with a focus
on investigating the particle acceleration and energy release
processes in solar flares (Lin et al. 2003). The RHESSI flare list
covers a time period of approximately 17 yr from 2002 to 2019.
Since our study includes solar spectra only for the 2015–2018
period, we used solar flare data for the same date range. The
RHESSI data contain the following information for each
observation: start times and end times, solar peak times, energy
levels, duration, total peak counts, X-position and Y-position of
the event on the solar disk, radial distance of a solar flare event
from the center of the Sun, active region, and flags. We
removed data points from the data set that contained zero
information. For example, if the X-position and Y-position of
one observation are both zero, the Spectroscopic Imager on the
satellite failed to collect any information; therefore, the data
point has to be removed to prevent it from introducing errors
into the machine-learning results.

3. Methods

3.1. Selection of Wavelength Range, Normalization, and
Principal Component Analysis

For this study, we used solar spectra spanning 6400Å–
6700Å as our training data. We selected this particular
wavelength range because it contains Hα, which exhibits
increased emission during a solar flare (Ichimoto &
Kurokawa 1984).

We conducted a series of preprocessing steps on the data:
First, we plotted the solar spectra for all distinct observations
and identified the region exhibiting the least fluctuation in flux.
Next, we calculated the 98th percentile within that region and
divided the flux values of all data points by this value,
generating a set of normalized flux values.

To reduce the effects of high-noise data on our training
results, specifically outliers that appear as spikes on the plot of
a solar spectrum observation, we replaced all of the normalized
flux values that are five standard deviations or more from the
mean of the normalized spectra with the average of their
neighboring values. See Figure 2 for a plot of noise-filtered
normalized spectra. Then, we applied principal component
analysis (PCA) to the processed data. PCA is a mathematical
technique that reduces the dimensionality of training data by
projecting data points onto a lower dimensional space that best
captures the variance of the original data, therefore enhancing
the efficiency of the subsequent machine-learning process
(Abdi & Williams 2010). Our processed data initially consisted
of 28,415 observations and 16,747 wavelength bins. After
PCA, we reduced the dimension of the normalized data to
(28,415, 1000) with 1000 principal components. Figure 3
shows the first 10 principal components of the normalized solar
spectra.

3.2. Data Correlation and Labeling

Supervised learning algorithms take in a collection of labeled
data. The labeled solar spectra represent the input values and
their labels represent the output values. We approximated the
true relationship between the input value and their labels using
machine learning by labeling each normalized solar spectrum
observation after PCA as one of the following three labels: no
flares, weak flares, and strong flares. We extracted flare events
from the RHESSI data and their corresponding energy band. In
the RHESSI data, each observation of a potential flare is
considered a “flare event,” and each has a corresponding range
of energy that was observed in the duration of the flare, referred
to as the event’s “energy band.” The flare events were divided
into three label classes: spectra without any flare events are
categorized as “no flares”; events with the energy band
6–12 keV are categorized as “weak flares”; all solar events
with energy bands greater than 6–12 keV are categorized as
“strong flares.” Visually, there are no differences between the
spectra despite some spectra having flares and others not.
The process of data correlation and labeling must also

consider the temporal differences between the observations
from RHESSI and Hα line data. RHESSI operates in the high-
energy regime from soft X-rays to gamma rays within the
coronal region, whereas the Hα line originates from the
chromosphere. Despite documented temporal differences
between these regions, as supported by relevant literature,
these differences are not consistently predictable (Gontikakis
et al. 2023). Given the variability and our lack of precise
knowledge about these time discrepancies, our investigation
does not explicitly account for them. Additionally, solar flares,
which are the focus of our study, persist over extended periods

Figure 1. Solar spectrum, a single observation.

Figure 2. Plot of normalized flux against wavelengths.
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rather than occurring as instantaneous events. Our approach
assumes the effectiveness of our current method, and the
performance of our final machine-learning model supports this
assumption, showing satisfactory results.

3.3. Imbalanced Data and Undersampling

Undersampling is a strategy that resolves the issue of
imbalanced data by reducing the size of the overrepresented
class (He & Garcia 2009; Mosley 2013). In our study, the
dominant class was the no-flare class. Initially, we detected
28,415 flare events from the RHESSI data set corresponding to
solar spectra observations. Notably, the strong flare class
exhibited the lowest representation, comprising only 467
instances. To preserve the model’s ability to classify strong
flares when undersampling, we randomly selected 467 no-flare
spectra and 467 weak flare spectra from the PCA 1000
components data using the make_imbalance function from the
imbalanced-learn module. The ratios of data before and after
undersampling are represented in Figure 4. For each class, there
are 467 spectra, which makes the undersampled set 1401
spectra.

3.4. Testing Supervised Learning Models

Since we divided the flares into three classes, we selected
models that are best fit for multiclass training and compared
their performance on two tasks: the average confusion matrices

over 10 trials and categorical accuracy scores (see Section 4.1
Equation (3) for the definition of categorical accuracy scores).
The models we selected are random forest, SVC with stochastic
gradient descent, and C-SVC, all implemented with sklearn
(Pedregosa et al. 2011). We selected these models because they
are well suited for supervised multilabel classification tasks and
consistently outperformed other models designed for similar
problems (Pedregosa et al. 2011).
We evaluated the performance of each model using its

confusion matrix averaged over 10 trials. For each trial, we
split the data into two sets: 80% went into the training set,
while 20% went into the test set. A confusion matrix is a
structured arrangement used to visualize the effectiveness of an
algorithm, often used within the context of supervised learning
(Stehman 1997). The matrix expands to an n× n format, where
n is the number of categories or classes. In our case, we have a
3× 3 matrix. Each row represents the actual classes, while each
column represents the predicted classes. Each entry in the
matrix shows the number of observations from the actual class
(row) that were predicted to be in a specific class (column)
(Stehman 1997). Therefore, visually, the brighter the diagonal
of the heat map generated from the confusion matrix is, the
more instances from each class are classified correctly.
We created the average confusion matrices by summing the

confusion matrices obtained from individual trials entry by
entry and then dividing them by the number of trials. We chose
to run 10 trials because unlike reinforcement learning or deep
learning models, there is less randomness in the training
process for supervised learning; therefore, it is not necessary to
run the models for a large number of trials to get their average
performance.

4. Results and Discussion

4.1. Model Evaluation and Selection

We trained four models and analyzed their performance to
identify the most promising candidates for further tuning and
optimization. Table 1 shows the descriptions of the models and
their hyperparameters. Hyperparameters are parameters of the
model that are not determined before the training process,
which can be tuned to minimize the generalization error or
underfitting (Probst et al. 2018). None of the models that we
used in the study use the default hyperparameters from sklearn.
We selected these specific hyperparameters to optimize the
training results based on experiments we ran previously.
Kernels are mathematical functions used to transform the

nonlinearly separable data into a higher-dimensional space,
where the data can be separated by a linear equation (Vert et al.
2004). We tried three kernels: polynomial, sigmoid, and radial
basis function (RBF). RBF proved to have the best results on

Figure 3. First 10 principal components of normalized solar spectra.

Figure 4. Original solar flare data proportion (left); balanced solar flare data
(right).
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average. RBF is described by the following equation:
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where x and ¢x are two distinct data samples from the data set,
and σ is a free parameter (Vert et al. 2004).

Figure 5 shows the average confusion matrices for the four
models we trained. The average confusion matrices of SVC
with an RBF kernel and random forest have the brightest
diagonals, which shows that the models can predict most of the
data points in each class correctly, especially when compared
to the confusion matrices of SVC with polynomial kernel and
SVM with stochastic gradient descent optimizer. This confirms
that our models have learned to correctly detect the presence of
solar flare events and classify some of them correctly using
solar spectra. We further evaluated the performance of random
forest and SVC with an RBF kernel by comparing their
accuracy scores and categorical accuracy scores. Accuracy
score, or aggregated accuracy score as seen in the following
Equation (2), is a commonly used metric that calculates the
overall accuracy of a classifier. It measures the proportion of
correctly predicted instances out of the total instances in the
data set (Mosley 2013).

( )=Aggregate accuracy
number of correct predictions

total number of predictions
. 2

Since aggregate accuracy is “blind” to specific classes, we
introduced another metric called the categorical accuracy score
to evaluate the performance of the model for each class.
Equation (3) shows the formula for the categorical accuracy
score, which is a variant of the aggregate accuracy score
specifically designed for multiclass classification problems, like
the problem in this study where there are three classes instead
of only two (Mosley 2013). It calculates the accuracy
considering each class separately. In other words, it calculates
the proportion of correctly predicted instances for each class

out of the total instances belonging to that class.

( )= 3Categorical accuracy
number of correct predictions in the class

total number of instances in the class
.

Other than accuracy scores, we also used metrics like
precision and recall class-wise to further evaluate the
performance of each model. The formulas for precision and
recall are (Kelleher et al. 2015)

( )=
+

precision
TP

TP FP
, 4Class A

Class A

Class A Class A

( )=
+

recall
TP

TP FN
, 5Class A

Class A

Class A Class A

where “TP” is true positives, the number of instances that were
positive in the data set and were correctly classified as positive
by the model, “FN” is false negatives, the number of instances
the model failed to identify as positive when they actually
were, and “FP” represents false positives, the number of
instances the model mistakenly classified as positive when they
were actually negative. As seen in Equation (4), precision for a
given class in multiclass classification is the fraction of
instances correctly classified as belonging to a specific class
out of all instances the model predicted to belong to that class
(Kelleher et al. 2015). In other words, precision tells you the
ratio of true positives to all instances that the model predicted
as positive. Precision measures the accuracy of all positive
predictions. Recall for a given class is the ratio between
correctly classified positive instances and all positive instances
in the data (Kelleher et al. 2015). It measures whether all
positive instances are predicted correctly.
Another evaluation metric we used was the F1 score, which

evaluates the performance of a model using both precision and
recall. Equation (6) shows the formula for the F1 score.

( )=
+- -

F
2

recall precision
. 61 1 1

A high F1 score indicates a balanced performance, meaning
that the model is both accurate in predicting positive instances
and is able to classify most of the positive instances correctly
(Powers 2020).

4.2. SVC with an RBF Kernel

Figure 6 shows that in our preliminary experiments with
different models SVC with an RBF kernel had the best
performance in both aggregate and categorical accuracy scores

Table 1
Description of Hyperparameters for Models

Algorithm Description of Hyperparameters

Random Forest Number of Estimators: 100

SGDClassifier Loss Function: Hinge

C-SVC Kernel: Polynomial
Degree: 2
C (Regularization Parameter): 1.0

C-SVC Kernel: Sigmoid
C (Regularization Parameter): 10
sigma: 0.0001

Figure 5. Average confusion matrices for SVC with an RBF kernel (top left),
SVC with polynomial kernel (top right), SVM with stochastic gradient descent
optimizer (bottom left), and random forest (bottom right).
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for all three classes. The average aggregate accuracy score over
10 trials is 0.68. The average categorical accuracy scores for
each of the classes—no flare, weak flares, and strong flares—
are 0.64, 0.77, and 0.56, respectively.

Figure 7 shows the average precision, recall, and F1 scores
of each model. The random forest model demonstrates a
balanced performance with both precision and recall at around
0.53. This suggests that it maintains a good equilibrium
between correctly identifying positive cases and minimizing
false positives. The F1 score of 0.52 further reinforces this
balance, making it a solid choice when a trade-off between
precision and recall is required. The Stochastic Gradient
Descent Classifier (SGDClassifier), on the other hand, exhibits
lower precision (0.28) and recall (0.35) compared to the
random forest. This indicates that it might struggle with both
correctly classifying positive instances and minimizing false
positives. The F1 score of 0.21 underscores this performance
gap, implying that this model may not be the best option in situ
ations where precision and recall are critical. The SVC with a
second-degree polynomial kernel shows similarly suboptimal
performance with a low precision of 0.22 and recall of 0.33. Its
F1 score of 0.22 suggests that it does not excel at either
precision or recall. This model appears to underperform in
comparison to the random forest. The SVC with an RBF kernel
has the highest precision, recall, and F1 score, all at 0.67. This
model performs well in both correctly classifying positive
instances and minimizing false positives compared to the other
models. Based on these results, We decided to further optimize
the SVC model with an RBF kernel.

The SVC function from scikit-learn with an RBF kernel has
two hyperparameters, C and γ, that allow us to find the right
value of variance that optimizes the model performance with
the RBF kernel function (Pedregosa et al. 2011). C value is the
regularizer parameter that can be manipulated to control the
extent of overfitting. A high C value may lead to overfitting,
and a low C value may lead to underfitting, where the model is
too generalized to identify the pattern in training data. γ defines
how far the influence of a single training example reaches. A
high γ value suggests “close” and may lead to overfitting
because it requires the data points to be close to group them; a
low γ value suggests “far” and may lead to underfitting
(Pedregosa et al. 2011). We applied GridSearchCV from

sklearn to determine which combination of C value and γ value
results in the best aggregate accuracy score. The C value and γ
value combinations we tested and their corresponding aggre-
gate accuracy scores are in Figure 8.
To determine good values of the hyperparameters, it is

important to search on the right scale. (Chih-Wei et al. 2016)
We decided to test a range of C values, 0.001, 0.01, 0.1, 1.0,
10.0, and 100.0, aiming to encompass a broad spectrum, since
the most common range of C values to test is 1–10 (Chih-Wei
et al. 2016). Initially, our empirical testing focused on the
common range of 0–1.0 for C. Notably, we observed a
substantial increase in accuracy scores as C surpassed 1,
particularly with γ values of 0.00001, 0.0001, and 0.001.
However, for C values higher than 10.0, we detected no
significant accuracy improvement; instead, there was a slight
decrease. Moreover, C values exceeding 100 exhibited a higher
likelihood of leading to overfitting. Consequently, we decided
to stop further testing C values higher than 100.

Figure 6. Categorical and aggregated accuracy score of each algorithm. Figure 7. Average precision, recall, and F1 scores of each algorithm.

Figure 8. Grid search, aggregate accuracy, and corresponding C and γ values
of SVC with an RBF kernel.
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Similarly, we tried different γ values to find one that
balances the variance and the bias of our model. The γ value
corresponds to the margin of the kernel function in the higher-
dimensional space that training data were projected onto. In
this higher-dimensional space, we partition the training data
into three sections, corresponding to the number of classes in
our multiclass classification problem. The boundaries at the
intersection of these three spaces are called the decision
boundaries (Kelleher et al. 2015). A high γ value means only
the closest points to the decision boundary will carry the weight
leading to a smoother boundary, which likely results in
overfitting. Whereas a low γ value corresponds to a larger
margin that contains more data points, which leads to
underfitting. We tested a range of γ values to see their effects
on the training results and whether decreasing the γ value
would lead to high-accuracy model performance. The values
chosen were 0.00001, 0.0001, 0.001, 0.01, and 0.1. We chose
this range because, theoretically, choosing exponentially
growing sequences of C and γ values is more efficient when
determining good parameters using a grid search (Chih-Wei
et al. 2016). In practice, it is good to try a γ value that is 6/k,
where k is the number of input data samples (Chapelle &
Zien 2005). Here, we have 1401 data points, which
theoretically makes 6/1401= 0.002 an ideal γ value. None-
theless, using a moderately coarse grid helps to identify the
optimal region within it. Then, we can empirically determine
which region on the coarse grid results in better performance.
This is why we chose a slightly wider range of C and γ values
compared to common practice.

As seen in Figure 9, when C= 10.0 and γ= 0.0001, the
SVC model with an RBF kernel achieves an aggregate
accuracy score of 0.60, which is the highest out of all tested
combinations. We identified that the model performance is
optimal when C is between 10.0 and 100.0, and when γ is
between 0.0001 and 0.001.

5. Conclusions

Based on the results presented above, we concluded that it is
possible to detect and classify solar flares in optical high-
resolution spectra using supervised learning algorithms. We
used SVC with an RBF kernel to categorize solar flares into
three classes. The model exhibited an overall accuracy score of
0.65, showcasing its ability to distinguish among these distinct
flare categories. A blind classification algorithm would have an
accuracy score of 0.33, so our algorithm is a significant

improvement. Nonetheless, there are some apparent limitations
to our findings.
One limitation is the model’s comparatively low accuracy in

classifying the “strong flare” category, as evident from a
categorical accuracy of 0.56. A possible strategy for improve-
ment is supplementing the training data with more actual data
on strong flares; increasing the model’s exposure to this class
should enhance its ability to classify strong flares accurately.
Another limitation is the overall performance of the SVC

model with the RBF kernel. The aggregate accuracy shows that
more than half of the time the model can classify most data
points correctly, but there is still room for performance
enhancement. The parameter choices, such as C (set at 10)
and γ (0.0001), may not be optimally configured, necessitating
a more comprehensive exploration of hyperparameter settings.
To further improve the overall accuracy of our current SVC
model, a multifaceted approach can be adopted. First, fine-
tuning the hyperparameters, such as the regularization para-
meter (C) and the kernel-specific parameter (γ), through a more
extensive grid search can lead to an optimized model
configuration. This would enable us to strike the right balance
between model complexity and generalization.
Also, while there are documented time differences between

these regions, as supported by relevant literature, these
differences are not consistently predictable. Given the varia-
bility and our lack of precise knowledge about these time
discrepancies, our investigation does not explicitly account for
them. Additionally, solar flares, which are the focus of our
study, persist over extended periods rather than occurring as
instantaneous events. Our approach assumes the effectiveness
of our current method, and the performance of our final
machine-learning model supports this assumption, showing
satisfactory results.
Moreover, our findings reveal implications for the character-

istics of the underlying data. Notably, the RBF kernel demon-
strated significant performance in classifying weak flares, both
before and after hyperparameter tuning. The model achieves an
average categorical accuracy score of 0.77 before tuning, and an
average categorical accuracy score of 0.80 after tuning. This
suggests that weak flares may exhibit distinct and nonlinear
patterns effectively captured by the RBF kernel. In other words,
the data may not be homogeneous, and the classes may have
varying degrees of complexity. One possible explanation could be
that all of the weak flares are similar to each other, while the
strong flares represent a larger range of flare energies. Therefore,
when our model is tested on the testing data, it might be less
accurate when predicting strong flares compared to weak flares.
In future work, one could explore other learning algorithms

to determine if they achieve better performance. Ensemble
learning methods, such as random forest and gradient boosting,
harness the collective power of multiple models and potentially
improve overall classification accuracy. Also, given the
nonlinear nature of the underlying data, as evidenced by the
performance of the RBF, it makes sense to consider the
potential of employing deep learning techniques as a next step.
Deep learning could potentially address the local cluster
patterns within our high-dimensional data due to its capability
to uncover hidden structures and nuances that may elude
traditional machine-learning models. It is possible that a neural
network with many neurons can preserve and identify the
complex patterns in strong flare data that supervised learning
models struggle to capture.

Figure 9. Accuracy score distribution across 1000 trials for no flare, weak
flares, and strong flares.
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Our work reported here represents an initial investigation
aimed at automating the detection and classification of flares in
high-resolution solar spectra. While we have achieved the
development of a model capable of classifying solar flares
within this context, future efforts should focus on enhancing
the prediction accuracy and exploring the potential of
alternative models, including deep learning approaches, to
further refine the classification capabilities.

The longer-term vision is to develop a robust framework for
detecting and categorizing stellar flares not just in our solar
system, but also in the broader context of exoplanetary
systems. The latter would enable more accurate corrections
for stellar contamination. Extending such an approach to the
host stars of exoplanets involves adapting the SVC models to
cater to the particular characteristics of these stars’ spectra.
Since the spectral signatures and flare activities of exoplanet
host stars might differ from those of the Sun, the model would
require recalibration and retraining with relevant data sets. The
recalibration would involve adjusting the model to recognize
flare signatures in different stellar environments, taking into
account factors such as the star’s size, age, and magnetic
activity.
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